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ABSTRACT

Quantitative use of satellite-derived maps of monthly rainfall requires some mea-
sure of the accuracy of the satellite estimates. The rainfall estimate for a given map
grid box is subject to both remote-sensing error and, in the case of low-orbiting satel-
lites, sampling error due to the limited number of observations of the grid box provided
by the satellite. A simple model of rain behavior predicts that rms random error in
grid-box averages should depend in a simple way on the local average rain rate, and
the predicted behavior has been seen in simulations using surface rain-gauge and radar
data. This relationship was examined using satellite SSM/I data obtained over the west-
ern equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I
rainfall estimates wés found to be larger than predicted from surface data, and to de-
pend less on local rain rate than was predicted. Preliminary examination of TRMM mi-
crowave estimates shows better agreement with surface data. A simple method of esti-
mating rms error in satellite rainfall estimates is suggested, based on quantities that can

be directly computed from the satellite data.
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1. Introduction

Satellite data are now regularly used to produce gridded maps of rainfall
averaged over time intervals ranging from hours to many months. It has not been easy,
however, to provide accompanying quantitative estimates of the accuracies of the grid-
point averages. This is in part becaluse remote-sensing techniques do not yet provide
sufficient information to allow unambiguous conversion of measurements into rain-rate
values for the observed area, and the distribution of errors introduced in the conversion
depends on the observed situation in ways that are not always known. The problem is
exacerbated by the highly intérmittent character of rain, which makes averages of rain
data noisy and comparison of remote-sensing results with measurements made on the
ground difficult.

The Tropical R.ainfail Measuring Mission (TRMM) satellite was launched in 1997.
Descriptions of TRMM are given by Simpson et al. (1988, 1996) and Kummerow et
al. (1998). One of the primary goals of the mission is to provide rain data sufficiently
accurate that TRMM satellite products can serve as a kind of transfer standard to
calibrate rain estimates from other satellite systems and thereby improve the overall
accuracy of global rain maps. To help reach this goal, the satellite carries several
instruments on board including a precipitation radar and a passive microwave sensor,
the latter having higher resolution than most satellite-borne microwave instruments.

An important component of the effort towards reaching this goal is developing
quantitative estimates of the accuracy .of the gridded products of TRMM. A number
of different approaches to this are being tried, including development of models for
the error intrinsic to the remote sensing methods themselves; comparison of satellite
products to ground-based measurements from rain-gauge arrays, radar sites, and aircraft
measurements during field campaigns; and comparison with other satellite observations.

Although much can be learned about sources of error in the TRMM rain

estimates from examining individual overlapping coincident snapshots of rain events
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taken by various TRMM instruments and by other satellites and ground-based
observation systems, much can also be learned from comparisons among averages of
satellite data and ground-based data. As long as the averages of the satellite estimates
and ground-based or other-satellite estimates are taken from time intervals and spatial
locations which are believed to have similar statistics, such averages allow enormously
more data to be used in the comparisons than can be assembled from coincident
observations. Comparisons of averages of data reveal biases in rain estimates. Such
biases may be small compared to discrepancies found in point-by-point comparisons
of coincident observations, yet knowledge of these biases is important when TRMM
data are used as a transfer standard, and especially so when the data are used for
climatological studies.

One of the commonest methods of comparing satellite estimates of rainfall to
ground-based observations and to other satellite estimates is to test the agreement
of averages over a spatial domain, such as a grid box on a map, averaged over a
sufficiently long time period that the averages are stable enough for the comparison
to be informative. Even if the remote-sensing techniques are perfectly accurate, such
averages will contain sampling error because the systems are not measuring rainfall
everywhere in the area at every moment. Rain gauges, for example, measure more or
less continuously in time but cover very little of the area, whereas radar views irregular
shaped volumes of the atmosphere at frequent but non-continuous intervals of time,
and satellite obséfvations are till more widely spaced in time. While averages from two
different systems may disagree because of inherent errors in the measurement methods,
they will almost certainly disagree because they contain different sampling errors.

Mathematically, comparison of two grid-box averages can be formulated like this:
Suppose a system X—TRMM, perhaps—gives an estimate Ry for the average rainfall

R in a grid box over some time interval of the order of a month or so, and that system



Y —another satellite, perhaps, or a ground-based system—gives an estimate Ry for the

same area and time. Each system makes an (unknown) error
€q = Ra — R; a=X,Y. (1.1)

A portion of the error €, is due to possible algorithmic and instrumental errors in
estimating rain rate when it is observed, or to differences in the mean rain rate observed
by the two systems due to spatial or temporal inhomogeneity in the rain statistics,

such as spatial variation in the mean rain rate, or a diurnal cycle. The rest is due to
inadequate sampling. To compare the estimates of the two systems to see if one is
biased relative to the other, one examines whether the difference Rx — Ry is bigger
than can be expla.ingd by chance. A straightforward approach is typically to estimate

the mean squared difference
o = ((Rx — Ry)?)
= ((ex —&v)?)
= O’X2 + 0'y2 — 2(exey) , (1.2)

where o2 = (¢2), and to estimate the bias as Rx — Ry % 20. (The limits 20 would be
appropriate if the difference Rx — Ry is normally distributed and 95% confidence limits
are wanted. If |[Rx — Ry| > 20, one is fairly sure that there is a nonzero bias present.
See, for example, Taylor (1997) for a discussion of such approaches.)

The use of o this way to make quantitative inferences about the bias, however,
assumes that the statistics of the differences Ry — Ry are normally distributed,
which cannot be taken for granted. Even when the assumption of normality is not
completely justified, though, the above approach to inferring a bias is likely to be a good
approximation to the correct one. A more satisfactory approach to this problem might
be to collect enough data from the two systems so that the statistical distribution of the
difference Rx — Ry itself could be established. Having obtained it, one could empirically

determine confidence limits for the bias (Rx — Ry), where the angular brackets indicate
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an average over an ensemble of datasets similar in nature to what has been collected.
An approach like this would probably benefit from employing resampling techniques.
See Zwiers (1990) and Wilks (1997), however, for impoftant caveats concerning these
methods.

The more conventional appr(;ach based on (1.2) has the advantage that it is
easily automated and easy to apply to disparate regions of the world, time periods, and
rainfall-estimation methods. Published results of studies done by various groups are
often already cast in this format so that comparisons can be quickly made. It should
also be noted that the error estimates ¢ as defined above are exactly what are needed
if a satellite map of rainfall is to be compared with climate models, whose output is
generally in the form of grid-box averages. If the satellite map of R is assumed to be
accurate to +20x for some grid box, and the climate model forecast to be accurate
to +20y (due to predictability limits), the satellite map value and fhe model forecast
should agree to within £2¢ computed from Eq. (1.2).

The purpose of this paper is to explore methods of estimating oy for weekly to
monthly averages of rain estimates obtamed from mlcrowave 1nstruments on low earth-

orbxtmg satelhtes, chudmg those on TRMM and the Special Sensor Mlcrowave/Imagers

(SSM/T) on Defense-Meteorologlcal-Satelhte-Program (DMSP) satellites. Because
raindrops interact strongly with microwave radiation, such instruments are believed

to provide some of the best estimates of rain rates observed from satellite platforms.
Sampling error céht'ributes substantially to ox for these satellites because they observe
any spot on the earth only a few times per day at best. It was originally argued (e.g.,
Wilheit 1988, Bell et al. 1990) that “retrieval errors,” the errors made in estimating
actual rain rates from microwave measurements, might contribute relatively little to ox
because the large number of fields of view (FOVs) averaged over in forming a monthly

average would tend to produce relatively small net average retrieval error, even if



individual random retrieval errors were large. Results presented in this paper appear
not to support this.

The error oy is likely to depend on many aspects of rain in a given region,
such as the amount and types of rainfall, the average synoptic conditions, the season,
sea-surface temperatures, availabilit‘y of moisture, levels of aerosol contaminants, etc.,
as well as on the sampling and observational characteristics of the satellite and its
instruments. In a previous paper, Bell and Kundu (1996), hereafter abbreviated as

'BK96, derived a simple formula expressing the sampling error as a function of the
mean rain rate and an “effective” number of samples. A more general argument for
the same formula was subsequently developed by Bell and Kundu (2000), hereafter
abbreviated BK00. They tested this formula using the sampling characteristics of the
TRMM satellite and the statistical properties of a number of datasets from ground-
based rain-gauge and radar measurements. In this paper, we continue the investigation
by comparing the formula’s prediction of the behavior of rms error in monthly averages
obtained from a satellite-derived dataset.

The dataset studied here contains retrieved rain rates over the western tropical
Pacific during the Tropical Ocean Global Atmosphere/Coupled Ocean Atmosphere
Research ‘Experiment (TOGA COARE), during November 1992 to February 1993.

The rain rates are derived from SSM/I data taken from two DMSP satellites that were
orbiting at the time, the F10 and F11. _The algorithm used in the retrievals is similar
to but not so thth developed as the one presently being used for TRMM. Details will
be given later. It is found that a fairly simple parameterization of the random error

in monthly averages over 2.5° x 2.5° grid boxes seems to describe the data well, but
that the dependence on the mean réin rate in the grid box is different from what was
predicted by the model and observed using ground-based data as summarized in BK0O,

and the error magnitudes are much higher.



The source of this difference appears to be the very different responses of the
satellite microwave instruments and algorithm to the presence of stratiform rain when
compared with the ground-based measurements. This explanation will be discussed in
a separate paper. Such a rain-type-dependent response has important implications for
using one satellite estimate to calibrate another, as is sometimes done in combining
datasets to produce global maps of rainfall, or in comparing satellite estimates to
ground-validation datasets.

Despite the differences observed here in the random error of satellite averages
compared with that of ground-based averages, the approach can still be used to
obtain parameterized estimates of oy as a function of the average rain rate in a
grid box, and thus can be used to supply fairly simple descriptions of the confidence
levels to be applied to each grid-box value of rain rate generated from the satellite
data. Comparisons of satellite estimates against values obtained from ground-based
instruments can therefore be carried out using Eq. (1.2), provided the sampling error
oy in the ground-based estimates can be obtained and the covariance term {exey)
estimated. In many instances the covariance term can probably be neglected, either
because it is actually small or because it will tend to decrease o, so that ignoring it will
mean that o is at worst overestimated and the error bars will therefore be conservatively
estimated.

In the following section we briefly review a model for how sampling error should
depend on rain réi:e and other factors and how sampling error estimates obtained with
ground-based data compare with the simple model. We describe the SSM/I-derived
dataset from which estimates of the random error in SSM/I monthly averages are
obtained in section 3, and in section 4 compare the estimates with estimates made from
surface radar taken in tropical oceanic environments. The SSM/I statistics display a
simple power-law dependence on local rain rate, and these power laws are described

in section 5. In section 6 we report some preliminary results on rainfall statistics
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observed by TRMM and compare and contrast them with the results from the SSM/I
observations. Section 7 summarizes our results and gives some concluding remarks.

Some statistical and computational details are provided in an appendix.

2. Review of a simple model for sampling error

A simple theoretical model presented in BKOO suggests how sampling error might
depend on the rainfall climatology and satellite sampling characteristics for a given
grid box. For the reader’s convenience and to establish notation we briefly review the
formula and the underlying concepts and definitions. For the detailed derivations see

BKO00.

a. Definitions

We are interested in an estimate of the space-time-averaged rain rate
- . (T
R=(Q/T) /0 dtRA(t) , (2.1)

where

Ra(t) = (1/4) /A d*xR(x, 1) (2.2)

is the area-averaged instantaneous rain rate, R(x,t) is the local rain rate at the point
x at time ¢, T is the averaging period, taken here to be one month, and A is the area
of the grid box. We assume A to be large enough so that the rain rates in neighboring
boxes can be assumed to be statistically uncorrelated to a good approximation.

The satellite in general views a'grid box intermittently and even then sometimes
only partially. Thus the instrument provides an estimate R; of the rain rate at times
{t;,i = 1,...,n} averaged over an area A; < A corresponding to the region of overlap
between the grid box and the instrument swath during the overpass at time ¢;. The
satellite estimate R of the true monthly average R is obtained as a weighted average of

the individual estimates R; :

R=

3~

S wik (2.9)
i=1 .
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with suitably chosen weights w; normalized to

(l/n)znjlwi =1. (24)
, =

(The estimate R would be an example of Ry in Eq. 1.1.) A convenient way to

obtain R directly from the data is to average the rain-rate estimates from all the
instrument footprints that fall within the area A over the period T'. (If the footprints
are distributed relatively uniformly over the areas A; then such an average is equivalent
to setting w; o A;/A. If the footprints are nonuniformly distributed but the area
averag;a R; has been corrected for this, the same choice for w; is appropriate. It is shown
in BK96 that this choice of weights provides a near-optimal estimate of R for most grid
boxes seen by TRMM except those at the highest latitudes.)

The uncertainty in the estimate R is measured by the mean squared error
ot = ((R-R)?, (2.5)

where the angular brackets denote an average over an ensemble of rain scenarios
consistent with the local rainfall chmatology. In general, as discussed in BK0O, 0%
contains contributions from both the sampling error arising from intermittent satellite
coverage and the retrieval error arising from the errors in converting the results of
measurements into actual rain rates. If we can assume that the retrieval errors are
uncorrelated from footprint to footprint, the contribution of these errors to R tends
to be small (Wilheit 1988; Bell et al. 1990), and the total error 0% is dominated by
the sampling err&' component. If the contribution to 0% from retrieval errors can be
neglected, the satellite estimates R; for each overpass can be treated statistically as if
they were exact. In Eq. (2.3) we can then set RB; = R; = Rg,(t;) and compute the
sampling error component using (2.5). We will return to these assumptions later.

As we have already mentioned, the sampling error can depend on the local
rainfall statistics as well as sampling characteristics of the satellite. A simple model

for this dependence is based on the straightforward assumption that variations in
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the total rainfall amount in an area are primarily due to variations in the number of
independently evolving precipitating systems present within it rather than variations

in the intensity of the individual systems. Such an assumption is present in almost

all statistical treatments of rainfall, and some such assumption can be used to justify
rain algorithms that estimate areal rainfall from areal coverage. The assumption is
dynamically plausible because the convective cores of storms are quickly evolving small-
scale phenomena, limited in their development by local lapse rates and the availability of
moisture. Synoptic-scale lower-level convergence may affect the probability of convective
plumes forming, but once started, they are self-limiting.

Starting from this simple assumption, BK0O obtained the formula

-‘% = C(RAS)™1/?, (2.6)
where
n
S=3Ai/A (2.7)
i=1

“is the “effective” number of full area sweeps of the grid box A by the satellite instru-
ment swaths, and the prefactor C' depends only weakly on a variety of rainfall charac-
teristics consistent with a given value of the mean rain rate R, as described below. Ar-
guments for a 1/v/R-dependence of relative sampling error on rain rate like that in Eq.
(2.6) were given in BK96, who noted some evidence for it when estimates from simu-
lations with radar data over southern coastal Japan (Oki and Sumi 1994) were plotted
versus R. An extensive discussion of the dependence of sampling error on rain rate R is
given by Huffman (1997). Quartly et al. (1999) provide a clear review of arguments for
(2.6) and an example of an interesting application of these ideas to a rain climatology
developed with data from the TOPEX/POSEIDON satellite dual-frequency altimeter.

Numerous estimates of rms sampling error have been made in the literature using
simulated satellite sampling of data taken by ground-based measurement systems in a

variety of geographical regions. BK0O examined many of these estimates, and found
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that the dependence of og/R on R was predicted quite well by (2.6) in those regions
where data were available in sufficient quantities. In particular, as mentioned above,
results of simulations with radar data over southern coastal Japan by Oki and Sumi
(1994) agree quite well (BK96) with (2.6); and Steiner (1996) obtained error estimates
using simulations with rain-gauge ax;d radar data from Darwin and Melbourne, Florida
and found that he could fit the dependence of error on R with an expression quite close

to (2.6).

b. Model explanation

A simple model that gives the relationship (2.6) can now be described. A more
thorough discussion is given by BK00. The model assumes that rainfall consists of
individual uncorrelated rain events having, on average, area a and duration 27;. From

these assumptions they derived the expression
C = (are)V?[1 — 27, /(T/S)|Y/? , (2.8)

where r. = R/p is the mean nonzero rain rate in a satellite footprint (subscript ¢ for
“conditional”), p being the probability that a footprint contains nonzero rain. The ratio
T/S can be thought of as the average time interval between two consecutive full area
observations by the satellite. When the sampling is sparse, one has T/S > 27, and
in this limit C =~ ,/ar;. When the effective sampling interval is comparable to 7,
this simple cell model is no longer applicable, and one must employ a more accurate
representation of--t-h'e statistical properties of the local rain field, an example of which
is described next.

A somewhat different explicit form of the constant C' was derived by Bell et al.
(1990) using an approach originally due to Laughlin (1981). Assuming that the entire
area A is sampled at regular intervals At = T /S, they obtained the formula

0%~ (03/8)f(At/2T4) (2.9)
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where 02 is the variance of the instantaneous rain rate R4(t),
0% = var[Ra(t)] , (2.10)

74 Is the corresponding correlation time [(1/e)- folding time of the autocorrelation of

RA(t), assumed to be pure exponential], and with
f(v) = cothv — 1/v. O (211)

The approximation (2.9) assumes T' > 74, which is certainly valid when T is of the
order of 1 month, since 74 is typically 4-10 h. The variance of the box-averaged rain

rate 0% can, in turn, be expressed in the form
ol =s2A%/A, (2.12)

where s? is the varie;‘nce of the instantaneous rain rate averaged over a satellite

footprint. The quantity A2 is the effective area of a rain fluctuation that can be

considered as statistically independent of other such fluctuations within the grid box

A, in analogy with the definition of an “effectively independent sample size” by Leith

(1973). Tt is given by - '
A Mo N

K =233 plix- i), (213)

0 i=1j=1 :

where p(z) denotes the spatial correlation between rain in two footprints separated by

a distance z, Ny is the total number of footprints in A, and the average is performed

over all pairs of footprints. The length A can be thought of as the distance over which

footprint-averaged rain rate is correlated, or as the typical size of a coherent rain event.

Note that the value of A may in principle vary with both FOV size [which affects p(z)]

and the area A, which affects the range of separations |x; —x;| encountered in the double

sum.

Combining equations (2.9) and (2.12), using the relations R = pr., and
s* = ps; + p(1 — p)r? (2.14)
~ p(s? +72) (2.15)
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(the latter valid when p is small), one again obtains formula (2.6) for the sampling error,
with the identification

- C=Alre(L+pd)] 2 (At/27y), (2.16)

where r; and s? are the mean and variance of nonzero rain rate (i.e., conditional on
Rpov > 0), and p. = s¢/rc. It should be pointed out that although the quantities
PiTes Sc, and A may each depend strongly on the footprint size, our simple theory leads
to the expectation that expressions (2.8) or (2.16) determining the constant C are
insensitive to it. Short et al. (1993) have suggested that the ratio p. = s¢/r. is relatively
constant over a range of footprint sizes, averaging times, types of data (rain-gauge or

radar) and climates. In the limit of sparse sampling this would imply
C = const x r¥/?A (2.17)

which should be compared to (2.8). Note that unless A is much larger than a typical
rain event, A2 in (2.13) will depend non-trivially on A, and thereby change the A
dependence of o in (2.6). In fact, when A approaches the size of a single footprint, it

is easy to see from (2.13) that A% ~ A.

3. Random error of monthly SSM/I rain rates

Rain estimates made from SSM/I observations provide a way of testing directly
the validity of the proposed simple theory of sampling error. Coverage by the SSM/I
as measured by S in (2.7) is quite close to that of TRM\/I’S ‘passive microwave sensor
(TMI) for grld boxefsW;t low latltudes and so sampling errors should be sumlar in size,
though their respective retrieval errors may differ. In this section we shall investigate

the statistical behavior of the retrieved rain rates and the inferred statistics of random

errors in gridded monthly averages of retrievals.
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a. The SSM/I dataset

The dataset we used consists of rain data from two satellites, the F10 and F'11, in
nearly sun-synchronous polar orbits around the earth. The data were taken during the
four-month Special Observing Period (SOP) of TOGA COARE from November 1992 to
February 1993. Local visit times of the F10 and F11 during the SOP were roughly 9:30
am/pm and 5:30 am/pm respectively. The SSM/I on each satellite viewé a given spot
on the earth an average of about 30 times per month, so that S =~ 30 in Eq. (2.6). (For
the TRMM microwave instrument, S =~ 30 as well, but local visit times shift over the
course of a month.) -

Rain rates were derived using the Goddard Profiling Algorithm, which is based
on the method described by Kummerow and Giglio (1994a,b), modified following the
description given by Kummerow et al. (1996). The dataset was generated as part of the
3rd Algorithm Intercomparison Project (AIP-3), as described by Ebert et al. (1996),
and in more detail by Ebert and Manton (1998). Rain rates are estimated for footprints
which may be thought of as circles approximately 28 km in diameter, even though in
reality they are elliptical in shape, the response of the microwave antenna is nonuniform
over the FOV, and there is blurring due to the finite integration time of the SSM/I
instruments. Kummerow and Giglio (1994b) provide a more detailed discussion of
this topic. The retrieved rain rates are provided as successive arcs each containing 64
partially overlapping footprints and covering altogether a swath about 1400 km wide.

We study the statistics of rain in the region extending from 10° S to 10° N and
from 135° E to 175° E in the tropical western Pacific. This region includes the area
where the TOGA COARE Intensive Flux Array (IFA) was located. For an optimal
choice of the grid-box size for our statistical analysis one needs to strike a compromise
among several competing factors. The box needs to be large enough so that rain rates
in neighboring boxes caﬁ be assumed tro”ber statlst;c;a.ily uncorrelated. This is essential

for treating collections of grid-box averages as sets of statistically independent samples,
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so that standard statistical methods of estimating confidence intervals for the averages
can be used. On the other hand one would like the boxes to be small so that there
are-as many boxes as possible, thereby giving us a more detailed, smoother picture of
the dependence of the retrieval statistics on local rain rate, as will be clear in the next
section. A small box size also increases the likelihood that rain statistics within the

box can be regarded as approximately homogenous. With these factors in mind we have

chosen a grid-box size 4 = 2.5° x 2.5°.

b. Estimate of the random error in grid-boz averages

The SSM/I dataset itself does not provide access to the true monthly average
rain rate R appearing in the definition of o in Eq. (2.5). To circumvent this difficulty,
we use a procedure suggested by Chang et al. (1993) to estimate the rms random error
og for either satellite. Consider the mean squared difference between the F10 and F11

estimates of a grid-box monthly average:
(B0 — Bu)?) = (R - R) — (B — B)%)
~ (R - B + (R - B)?)
~20% . (3.1)

The approximation above would be legitimate if the observations by the two
satellites are far enough apart in time to be nearly uncorrelated. Although the legiti-
macy of this assumptlon may be surprising, since thersratellit% can in prihciple view éhe
same scene only 4-5 hours apart, several factors appear to justify the approximation.
Each satellite visits a grid box only once per day on average, and the visits of one satel-
lite are generally well separated from the other’s. Moreover, some simple calculations
based on Laughlin’s (1981) approach show that, for two satellites with idealized sam-
pling like that of the F10 and F11, expression (3.1) is quite accurate, even though the
two averages Rio and R;; are not in fact statistically independent. It should be noted,

however, that the same calculation indicates that the approximation (3.1) is not so good

-16-



if the satellites were to have closer sampling times or, more surprisingly, respective visit
times nearer to 12 hours apart. Finally, this approximation was corroborated by per-
forming sampling error calculations using the method developed in BK96 and the exact
sampling patterns of the F10 and F11 satellites, and the approximation (3.1) is borne
out at the level of 5% accuracy.

The error variance 0% as estimated in (3.1) includes both the sampling error
described in section 2 and also any contributions from randomly varying retrieval errors
in the two satellites’ estimates. As discussed in the previous section, if random retrieval
errors are uncorrelated from footprint to footprint, the contribution to ¢% from these
errors should be quite small, and the sampling-error component would dominate the
estimate of 0‘% based on (3.1). If, however, retrieval errors are correlated spatially or
from one satellite viewing to the next, 0% may contain significant contributions from
retrieval error. For any of the purposes reviewed in the introduction, though, the error
o2 introduced there is more properly given by 0% rather than the sampling error for
perfectly measured rain rates. The fact that the estimate 0% includes retrieval error
as well as sampling error is therefore an advantage rather than a disadvantage to an
approach using (3.1).

Systematic differences in the rain retrievals by the two satellites, if present, could
also contribute to the estimates of 0% made with (3.1). Such differences might be due to
instrumental biases or operational differences between the two systems, or to significant
diurnal va.riation"i-n'the rain statistics for the grid box. The diurnal variation would,
however, have to be more complex than a simple first-harmonic sinusoid in order to
contribute in this way, since each satellite views grid boxes at two times of the day,
twelve hours apart, on average. Differences in the F10 and F11 averages due to diurnal
effects seem unlikely to be very large for grid boxes over oceanic regions, but could be

appreciable for boxes containing significant amounts of land.
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c. Statistical analysis of the data

Monthly averages of retrieved rain were obtained for each 2.5° x 2.5° grid box
in the TOGA COARE SOP dataset described above, yielding a total of 512 samples
(128 grid boxes, 4 months of data). Grid-box results were also segregated according
to whether the grid boxes contain r;lostly land, mostly ocean, or a mixture, but the
differences in the statistics for these subsets were, for the most part, difficult to discern.
They will be discussed later. _

The coverage provided by the two satellites can vary from grid box to grid box
and month to month. To gauge this, let us define Sig and Sj; as the effective numbers
of full viewings of a grid box by the F10 and F11, respectively, as measured by (2.7). To
compute S1p and S11, & method is needed for estimating the areal fraction A4; /A for each

satellite visit z.

(i) Estimation of S1o and S11.

If the number of footprints required to cover the entire area A is known, the ratio
of the actual number of footprints in A to the full-coverage number provides an estimate
of the fraction 4;/A for that particular visit. A possible method of determining the full-
coverage footprint number is to examine the distribution of the number of footprints
observed in many overflights of a grid box. Since the SSM/I swath is wide compared to
the grid-box size, we would expect a histogram of the number of footprints observed in
a box to peak at the maximum possiblé number. In reality, such histograms are not so
simply behaved. This is in part because the density of footprints varies with location
in the instrument swath, being largest near the swath’s edges. Sporadic data loss due
to instrumental and algorithmic problems can also occur. As a result, the histogram of
footprint counts displays a somewhat broadened peak at the largest footprint counts.
Although a more exact method of determining the fractions A;/A could certainly be

devised, it is sufficient for our purposes to define the full-coverage footprint count as the
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number of counts Npax Where the histogram peaks. We estimate the fraction A;/A for
a given visit to a grid box to be the ratio of the actual footprint count to Ny,c. This
estimate can sometimes be greater or less than 1 even though the swath completely
covers the grid box, but the monthly sums Sy and S;; that result from this choice

are reasonably good approximation:s to the values that would be obtained frqm more
geometric estimates, and in addition take account of occasional data dropouts. For

the SSM/I dataset we found Npyax =~ 120. Values of Sjg and S1; computed this way

for the 512 cases ranged between 15 and 34, with a mean value of about 28, indicating
considerable variations in the satellite sampling. (It should be noted that the number of

days available in the months also varies.)

(ii) Removing effects of variable coverage.

Since our chief concern here is with how well (2.6) predicts the dependence of
o on local rain rate, it would be preferable if we could minimize the effects on our
analysis of the varying coverage by the satellites. Arguments very similar to those used
in deriving (2.6) predict

- - Rr1 1 '
R R 2y 02 I 2

where Sjo and Sp; are the effective numbers of full viewings of a grid box by the F10
and F11, respectively, as measured by (2.7). By defining a “mean” coverage S for the

two satellites by )
2/S=1/S10+1/51, (3.3)

we can recast Eq. (3.2) in a form identical to Eq. (2.6) even if the relative coverage

by the two satellites varies. As in Eq. (2.6), the coefficient C in (3.2) may depend

on local rain statistics in ways suggested by Egs. (2.8) or (2.16), but it should be
relatively insensitive to changes in coverages Syg or Si1. (It should be noted that the
rain statistics determining C are now those of the “measured” rain, including the effects
of randomly varying retrieval error.)
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Consider the result of multiplying Eq. (3.2) by S/2,
S{(Rip — R11)%/2=C?R/A . (3.4)

~ The ensemble average (-) here indicates an average over many different sequences of rain
events all having the same monthly ‘mean R and observed by the two satellites. Since
changes in S have relatively little effect on the right-hand side of (3.4), the left-hand
side will be insensitive to changes in S as well. This allows us to obtain estimates of the
right-hand side of Eq. (3.4) from averages of data with differing values of S, so that we

can write

C?R/A = (S(Ryo — R11)?)/2. (3.5)

where now the angular brackets are meant to indicate an average over an ensemble
of months with varying rain sequences with monthly average R and varying satellite

sampling as measured by S.

(iii) Dependence of RMS error on R.

Guided by Eq. (3.5), then, we investigate the dependence of 0% on rain rate by

first computing the mean rain rate

for each of the 512 grid boxes and months. The 512 pairs of estimates from the F10

and F11 are sorted into 8 bins in order of increasing values of R, with 64 samples to

a bin. For each bm, an average over the 64 values of S(Rjg — Ry1)?/2 gives us an
estimate of C?R/A, using (3.5), at the mean R for that bin. The binning process
destroys information regarding the geographical location of a particular box and the
observation month—samples containing similar monthly averaged rain rates are lumped
together regardless of their location or time of observation. Although rain statistics no
doubt change as various factors affecting the formation and development of precipitating

systems within each grid box change, the operating assumption is the same as that of
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the simple model: that if the frequency with which rain events occur in a grid box is
known, all other rain statistics at that location can be predicted reasonably well.

It was mentioned in section 2 that sampling errors for monthly averaged TRMM
TMI data have been estimated with simulations using ground-based measurements in a
variety of rain environments. Near‘the equator the TMI and a DMSP satellite carrying
SSM/I provide almost identical coverage, as measured by S, if both instruments are
providing rain estimates from the entire instrument swaths during the month. With
perfect coverage, S =~ 30 for both satellites. In order to compare our SSM/I results to
these earlier TRMM studies, Eq. (2.6) and our estimates of C2R/A from (3.5) can be
used to compute what the random error of in monthly averagés of SSM/I data would

be for the same coverage Sy = 30 assumed in the TRMM studies, via

R - 9
_ [(S8(Rig — R11)?)/2 Y
G'E = SQ

Figure 1 shows a plot of oz /R estimated for a single SSM/I providing maximum

(3.7)

possible coverage during a month (i.e., assuming an average of 30 visits per month).
Results are plotted versus the average R for each bin. Error bars are 95% confidence
limits obtained under the assumption that differences in monthly means behave
statistically like independent, normally distributed variables.

Also shown in Fig. 1 are sampling-error estimates based on two radar datasets
collected from ships stationed over open ocean. The two estimates labeled “GATE”
use the statistics of data taken over the eastern tropical Atlantic during Phases I and
II of the Global-Atmospheric-Research-Program Atlantic Tropical Experiment (GATE)
in 1974. The six estimates labeled “TOGA COARE” use the statistics of radar data
from two ships during the three cruises of the SOP. The methods used in obtaining
these estimates are described fully in BK00. Comparison of the SSM/I estimates with
the TOGA COARE estimates is particularly appropriate because the data were taken
during the same four months, although the radar data cover only a limited region
around 2°S, 156°E.
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Figure 1. Relative sampling error of monthly grid-boz averages over the equatorial
western Pacific as a function of mean local rain rate R. SSM/I estimates have been
corrected for missing data. A power-law fit is shown. Estimates using surface radar
- data assume coverage identical to what is provided by the TRMM microwave instrument,
averaging 30 visits per month, very close to the SSM/I sampling. GATE radar data were
taken during 1974. TOGA COARE radar data were taken contemporaneously with the
SSM/T data. ‘ _

Figure 1 brings out two salient characteristics of the SSM/I error estimates: 1)
Estimated errors in SSM/I averages, which may include random retrieval errors, are
30% or more of monthly mean rain rates, and considerably larger than previous error
estimates based on surface radar data, which are nominally estimates of sampﬁng error
alone (but could include the effects of errors in the radar-derived rain rates); and 2)
even though both the simple model and experience (though admittedly limited) with
ground-based data suggest that cg/R might be described by a power law with exponent
—1/2, the SSM/T errors are better described by a power law with an exponent of about
-0.3.

It should be noted that a number of sampling error estimates have been made

with ground-based data other than those shown in Fig. 1. They are reviewed by BK0O.
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Two extensive studies, by Oki and Sumi (1994) and by Steiner (1996), yielded sampling-
error estimates that are comparable in magnitude to the SSM/I values in Fig. 1, except
at the highest rain rates, where the SSM/I estimates are larger. Because these studies
used data from southern coastal Japan and from Darwin, on the northern coast of
Australia, however, it is not clear tl;at comparison with the SSM/I results is appropriate
here. Rain in tropical coastal areas is quite different in character from rain over the
open ocean. The SSM/I statistics we used are largely determined by rain over oceanic
areas. The TOGA COARE radar statistics shown in Fig. 1 are from an area and time
period included in the SSM/I dataset, and so would be most nearly comparable.

It is interesting to note that Chang et al. (1993) also obtained rms error as a
function of the mean rain rate on a 5° x 5° grid, using global oceanic monthly estimates
of rainfall obtained with their microwave emiséion—based algorithm. If their results are
converted to the format used here, they can be fitted to cg/R ~ 0.26 R~926 (R in
mm h™?!). The relative errors they found are roughly 50% higher than the corresponding
errors for 5° x 5° boxes we found (not shown) using the SSM/I dataset studied here.
We conjecture that, because the grid boxes in Chang et al.’s (1993) study were all 5° x
5° regardless of location, boxes at higher latitudes that contributed to their statistics
had smaller physical areas, and Eq. (2.6) predicts that they would have higher rms
errors than for boxes near the equator. Thus, the higher errors of extra-tropical grid
boxes may have been averaged with the errors for tropical grid boxes and resulted in an
overall increase iﬁ-average error, whereas our analysis covers only equatorial areas.

Figure 1 has shown that, where they can be compared, the statistics of the
microwave-retrieved rain rates clearly differ in important ways from the statistics
of surface radar data. In the sections that follow we shall try to identify where the
differences océur, propbse some useful diagnostics for these differences, and suggest how

Eq. (2.6) might be modified to take them into account.
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4. Exploration of ground-radar-SSM/I differences

The assumptions of the simple model in section 2 lead to predictions for sampling
error like Eq. (2.9), where mean squared error is the product of the variance of area-
averaged rain rate, 04, and a factor‘ f(At/274)/S determined by the temporal sampling
pattern of the satellite and by the correlation time 74 of area-averaged rain rate. We

can rewrite it somewhat schematically as
ok ~ ok f(T/2145)/S . (4.1)

In reality, when satellite visits are not evenly spaced and the area A is not viewed in its
entirety on each visit, the dependence of f/S on a satellite’s sampling pattern is more
complicated than the simple dependence on S in (4.1) suggests. Based on an earlier
study (BK96) with TRMM sampling, however, Eq. (4.1) seems to capture much of the
change in sa.nipling error with satellite sampling. )

As we shall see later, the correlation times of SSM / i;retrieved rain rates tend
to be sirhila; in size to the cori‘elation ﬁm&s seen in radar data and small compared to
the typical timerinterva.l between SSM/1 Vi.SitS. We theréfbre conclude that the factor f
cannot e}éplé.ih the differences in sampling errors in Fig. 1. Most of the difference seems
to be dﬁé to differences in variability of afea—a,veraged rain rate as reported by satellite

and ground-based systems, and we turn now to investigating the differences in ¢ for

the two.
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Figure 2. Ratio of the variance of instantaneous area-averaged rain rate R4(t) to R,

A =2.5° x 2.5°, computed following the procedures used for Fig. 1. The simple model
predicts that this quantity should be insensitive to local rain rate. Error bars (95% conf.)
are shown only for GATE, but others would have similar errors. A power-law fit to the
SSM/I points is shoun. Corresponding statistics derived from TRMM TMI data are also
plotted, and are discussed in Sec. 6.

By combining Egs. (2.6) and (2.9) it is easy to show that the simple model
predicts that 0% should increase linearly with R, so that the ratio o% /R should remain
constant with changing local rain rates. Fig. 2 shows this quantity plotted as a function -
of R using the same binning procedure as in Fig. 1. In order to improve the legibility
of the figure, only error bars (95% confidence intervals) for the ratio computed from
GATE radar data are shown. They are representative of the estimated errors in the
other plotted quéhtiti%. (Also shown are corresponding values obtained from TRMM
TMI retrievals. These will be discussed later.) Given the level of uncertainty, it could
be argued that the surface radar statistics are consistent with the constancy with
R predicted by the simple model, though synoptic conditions at the two radar sites
are sufficiently different that some underlying changes in the statistics may also be

occurring. Whether or not this is so, it is evident from Fig. 2 that variances in SSM/I
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area averages are significantly larger than for the same averages obtained with surface

radar, and they also appear to increase faster with R than the surface data.
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Figure 3. The scale of “statistically independent rain events,” for SSM/I data in 2.5°
x 2.5° grid bozes, from Eq. (2.18). If spatial correlations decreased exponentially as
exp(—z/\) with separation z and the dimensions of A are large compared to A, then

A=A/ V27, See appendw: for details.

7 Equatiori (2.12) indicates that o is determined by the variance of the individual
SSM/I “point” estimates of rain rate (i.e., s* for FOV estimates) and by A2, the area
of statistically independent rain events. Figure 3 shows the dependence of A on R,
calculated usiﬂg Eq. (2.13). The calculation of A had to be adapted to handle the
actual spatial diét;ibution of SSM/I footprints, and is described in the appendix. In
this and the plots that follow, the statistics for each value of R are averages over 64
grid-box/months with monthly means in the neighborhood of R, just as in Figs. 1 and
2. SSM/I estimates for regions with monthly rain rates similar to those observed by
the surface radar in TOGA COARE, R ~ 0.2mm h™!, yield values of A = 100
km (corresponding to a “correlation distance” of about 40 km—see appendix). If the

TOGA COARE radar data are smoothed to a spatial resolution corresponding to the
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scale of the SSM/I footprint area, about /7(28/2) ~ 25km, and used to calculate A, a
value of A very close to the SSM/I value is obtained. It is therefore the larger values of
s? for the SSM/I rather than differences in A that are mostly responsible for the larger

values of 0% seen in Fig. 2.
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Figure 4. Mean r. and standard deviation s; of SSM/I rain rates in FOVs with nonzero
rain, and the ratio p. = s¢/rc.

Equation (2.15) relates values of s? to the average areal coverage by rain, p, and
the mean and variance of nonzero rain rates, . and s2. Figure 4 shows the conditional
mean rc = R/p and standard deviation s, of nonzero rain seen by SSM/I, and also
the ratio . = s¢/re, as a function of R. The statistics are comparable in size to
those reported for GATE data by Sho;'t et al. (1993), especially u.. The ratio p. is
nearly constant, a phenomenon also noted by Short et al. (1993) in other rain data.
There are, however, subtle threshold-dependent effects in the conditional statistics
that make intercomparison of the radar and SSM/I statistics problematic. The radar
is able to detect much smaller rain rates than the SSM/I. When values of 7., 3., and
i are calculated from surface TOGA COARE radar data smoothed to a spatial
resolution corresponding to the scale of an SSM/I FOV [~ (25 km)?], we find values
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re = 0.5 mm h—l, sc = .4 mmh~!, and #e = 2.7 £ 0.3. They are quite different from
the satellite values. For example, we see in Fig. 4 that for the SSM/I data . ranges
between 1.21 and 1.44. The difference in the values of y. obtained by us from TOGA
COARE radar data and the values ?btained from SSM/I data and in the analyses of
surface data by others suggests that p. may depend on the threshold of detectability of

rain in a way that was fortuitously absent in other studies.
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Figure 5. Autocorrelation of SSM/I rain rate averaged over 2.5° x 2.5° grid bozes for
various categories of monthly rain rate R. Correlations are shown only when more than
about 400 pairs of observations are available af a given separation 7. Curves through
data points are smoothed interpolations. :

In order to study temporal correlations of area-averaged SSM/I rain estimates, a
time series of the average rain rate for full-area observations at each grid-box location
was obtained. All visits with greater than about 85% coverage, determined from
the footprint counts as explained in section 3.c.i, were included to get a time series
that is sufficiently dense. Because the visit times of the F10 and F11 sometimes
differea by as little as 3 h, thesé series had sufficient time resolution for useful time
correlations to be obtained. Figure 5 shows the lagged autocorrelations of R4(t) sorted
into the same 8 climatological rain-rate bins used in the previous figures; that is,
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autocorrelations for a given R represent the statistics of 64 time series with monthly
means in the neighborhood of R. For each of the 8 rain-rate categories we fitted the
lagged autocorrelation function of the area-averaged rain rate to a simple exponential
form exp(—|t — t’|/74). The correlation times 74 were found to be about 6 hours and
nearly independent of R, except at the lowest and highest rain rates. Spectral analysis
of the time series indicated enhanced spectral power at frequencies corresponding

to periods of 2-5 days and 40-50 days. The former may possibly be related to the
convective disturbances with that time scale discussed by Takayabu and Nitta (1993),
while the latter may be related to the Madden-Julian oscillation (Madden and Julian
1972; Chen and Yanai 2000).

It is well known that the statistical behavior of rainfall differs over land and
ocean. To investigate this quantitatively, we employed a land/ocean mask at 2.5° spatial
resolution. Of the 128 grid boxes in the chosen area, 97 are categorized as covered
by ocean, 23 as mostly covered by land—Ilargely concentrated around New Guinea
in the southwest quadrant of the area we studied—and 8 as containing substantial
amounts of both. The statistics of land-containing grid boxes were sorted into only 4
bins with increasing rain rates R in order to have a reasonable number of samples in
each bin. Monthly rain rates in the land-containing boxes tended to range over values
less than half as large as for the ocean-covered boxes. Most land-ocean differences in
the statistics were indistinguishable from variability caused by small-sample effects. The
conditional means r,, however, were 50% to 75% larger over land, unlike the values of
8¢, which were, perhaps surprisingly, a little smaller. The ratio p. ranged from 1.43
to 1.56 over ocean and from 0.85 to 1.0 over land. A pronounced peak in spectral
power was found in the time spectrum of rain over land-covered boxes at a frequency
of 1 day~1, indicating the presence of a strong diurnal cycle. No spectral peak was
evident in oceanic rain rates at that frequency. There is also little sign of any enhanced

autocorrelation at 7 = 24 h in Fig. 5, except perhaps for grid boxes with the smallest
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rain rates, indicating that statistics tended to be dominated by the statistics of the

oceanic grid boxes.

5. Power-law descriptions of SSM/I statistics

The statistics of the SSM/I retrieved rain rates are described quite well by simple
power-law dependences on R, as can be seen from the power-law fits shown in Figs. 1-4.
Since this provides a much more concise description of the statistics, we present these
results here.

It is convenient to express the various statistical quantities as powers of the
dimensionless quantity p rather than R. We introduce the three basic exponents a, 3

and <y through the relations
re = Top%, 82 =sipP, A= Adp . (5.1)

Note that in the simple model all the exponents would vanish. From the definition
R = pr it follows that
R = ropt*e, (5.2)

and if we treat the ratio y, as approximately constant, Eq. (2.15) gives
s~ (s2+rd)pltP . (5.3)

(Strict constancy of u. would imply 8 = 2a.)

The expression (2.12) for 0% implies the power-law relation
04 = (5§ +75)(AG/A)p!*F . (5.4)
Because p and R are related by (5.2), the exponents o, 3, and v can be derived from
the exponents obtained with error-weighted least-squares power-law fits to the statistics

in Figs. 2-4. We find that the SSM/T statistics can be reasonably well explained by the

values

a =017, #=053, v=0.53. (5.5)



The coefficients of the power-law fits in Eqgs. (5.1) were found to be
ro=45mmh7!, sg=76mmh™!, Ag=220km . (5.6)

Although not shown here, it was found that the right-hand side of Eq. (3.5) is
proportional to g4 to reasonably good accuracy; that is, the dependence of o on R is
mostly determined by the R-dependence of o4, as predicted in (4.1). Their relationship
is described empirically by

0% =0.660%/S . (5.7)

It is interesting to compare the empirical coefficient in (5.7) with what would be
estimated from Eqs. (2.9) and (2.11). If we use the correlation time 74 = 6h found
in section 4 for most rain rates R, and the mean monthly areal coverage S = 28, we
calculate f(T'/274S) = 0.56. Given the crude nature of the estimate, which assumes
exponential autocorrelation of R4(¢) and equally spaced observations in time by the
satellite, the extent of agreement with the observed value 0.66 is remarkable.

If the relatively small effects on sampling error g due to changes in 74 with R
are neglected, Eq. (4.1) implies

o « pttht, (5.8)

The relative sampling error for a single SSM/I satellite shown in Fig. 1, when fitted to a

power law in R,

cg/Rx R¢, (5.9)

gives an exponent 5 = —0.30 (instead of -0.5 predicted by the simple model). The
power laws (5.1) would predict § = -1/2+ (8 + v - @)/2(1 + &), 0or § = —-0.12
when the exponents in (5.5) are substituted. The discrepancy in the exponent obtained
by directly fitting /R to a power law and the exponent predicted using the other
empirical exponents appears to be due to the changes in the correlation time of R4(t) at

the smallest and largest rain rates R seen in Fig. 5. The resulting changes in the factor
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fin (4.1) are equivalent to an increase in the predicted value of § from —0.12 to a value

near -0.3.

6. Some Preliminary TRMM Results

The analysis so far described was motivated in part by the need to supply a
measure of the random error for gridded monthly rain-rate products produced by
TRMM. From a rainfall-retrieval-algorithm point of view, the TRMM’s TMI has an
advantage over the SSM/I because the TRMM satellite orbits closer to the earth, givihg
the instruments improved spatial resolution, and the TMI includes a lower-frequency
dual-polarization 10.7-GHz channel in addition to SSM/I’s four higher-frequency
channels. Although the random error in TRMM monthly rain climatologies will be more
thoroughly explored in a subsequent paper, it is interesting to compare the performance

of TRMM to what has been learned about SSM/T here.

a. TRMM Data

~ We used TMI surface rainfall retrievals made available by the Goddard Space
Flight Center (GSFC) Distributed Active Archive Center (DAAC) as official TRMM
product 2A12, version 4, for the four-month period January-April 1998 over the same
geographical area as the one used in the SSM/I study here. The TMI rain product has
benefited not only from the instrumental advantages mentioned above, but also from the
use of a version of the algorithm more gdvanced than the one used with the SSM/I data.
The most imporﬁ-a;nt change in the algorithm is probably the addition of a step which
adjusts for the relative amounts of convective and stratiform rain present in each FOV,

as described by Hong et al. (1999).

b. Data Analysis Results

The dependence of the statistics of TMI rain-rate data on local rain rate R was
determined in the same manner as before, by binning the statistics for each 2.5° x 2.5°
grid box and month according to the monthly mean R. A plot of 0% /R for TRMM
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is shown in Fig. 2. The number of bins was increased to 16 when it became apparent
that the statistics change in character above and below R ~ 0.1 mm h™}, so that each
point represents an average of 32 rather than 64 grid-box results. It is encouraging to
see that the TRMM statistic has moved closer to the radar values. The improvement is
especially marked at the higher rai;l rates, where the ratio is both more nea.rly constant
with R and considerably lower than the SSM/I results.

Rather good fits of the TRMM results to power laws in R can be obtained if ,
a fairly sharp crossover of the exponent values for rain rates above and below R =
0.1 mm h™! is allowed. The parameters of the fits in both regimes are given in Table
1. The parameters for the conditional rain statistics for TRMM are very different from
those of the SSM/T statistics given in (5.5) and (5.6).

7. Summary and Conclusions

SSM/I rain-rate data taken during the TOGA COARE experiment were used
to estimate the random error in monthly averages over 2.5° grid boxes in the western
tropical Pacific. The satellite algorithm that was used is a predecessor of the one
currenﬂ& 1rlsredr to brbcess TRMM nﬂlicréw_a‘,;eﬂ vg_ia.,ta.r The error estimates were made
two diﬁ;ergnt v&ays: one estimate was obtainerdrfrom the rms differences of the monthly
averaged rain rates given by the F10 and F11 satellites; a second estimate was obtained
from the variance, ai, of instantaneous area-averaged rain rates R4(t), and a rough
estimate of the temporal correlations of R4(t). The two estimates agreed quite well.
This suggests that reasonable estimates of random error in gridded monthly averages
might be made from 0% and an approximate characterization of the time correlations
of R4(t)—quantities that can be obtained from the satellite data themselves. Such
estimates will include the contributions of random retrieval errors to the total error.

Over the ocean, both the magnitude of 0% /R and its dependence on local rain
rate R are clearly different for the SSM/I rain estimates and surface radar estimates.

The higher variance of SSM/I estimates of R4(t) compared to radar appears to be due
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mostly to the larger variance of individual footprint estimates, measured by %, rather
than greater spatial correlations of the rain data—to the extent they are measured by
A. It will be shown in a separate paper that the SSM/I estimates are highly correlated
with stratiform rain as identified in the TOGA COARE surface radar data, and not

so well correlated with rain identiﬁe;d as convective; the SSM/I rain estimates where
there is stratiform rain are much larger than the corresponding radar estimates, whereas
rain estimates where the radar reports convective rain tend to be estimated smaller by
SSM/I. The net effect is to make s2 large for SSM/I FOV estimates. These conclusions
apply, of course, only to the rain data generated by the particular algorithm used to
produce-the dataset investigated here.

Little has been said here about how sampling error depends on the grid-box
area A. As was seen in Eq. (2.6), the simple model would predict o o« A~1/2,
Equations (2.9) and (2.12), however, indicate that this is only true if the area A is much
larger than A2, The 2.5° x 2.5° boxes studied here are not quite large enough in this
respect. Although increasing the box size to 5° x 5° reduces the number of samples
per bin wheﬁ the statistics are binned by rain rate R, as was done in section 3, such
an experiment shows that the power-law dependence of af, on R is almost the same for
the two box sizes, but that the dependence of ¢4 on A is consistent with o4 o< 47033
rather than with A~1/2, Thus, increasing the box size from 2.5° to 5° does not decrease
sampling error as much as the simple model would have predicted if A were larger.

Based on%o'u'r results, it is recommended that future algorithm intercomparison
projects include comparisons of af, /R for grid-box sizes of the order of 2.5° or larger, in
addition to comparing the mean rain rates R themselves. The ratio is easy to calculate
and, as has been shown here, can serve to bring out some aspects of the algorithms
that can be missed in point-by-point comparisons but are important for climatological
use of the data. This quantity has the advantage that, other things being equal, it is

not so sensitive to instrument resolution, and so makes intercomparison of different
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measurement systems conceptually easier. The quantity o4 can reveal the presence of
correlated retrieval errors in the satellite product, a possible byproduct of the reason
for its being larger in the SSM/I data than in the radar data, as will be discussed in a
subsequent paper.

An especially important result is that the quantity ¢% can be used to estimate
the accuracy of monthly averages of rain data via a relation like Eq. (5.7). Such an
estimate avoids some of the assumptions used in parameterizing error in terms of
average rain rate R, though it requires that the satellite dataset supply values of o4 as
well as R for each grid box. 7 ) 7

Whether Because of better resolution and additional channels in the TMI or
because of improvements in algorithms, the statistics of TRMM TMI (version 4) rain
estimates from the western tropical Pacific appear to be sigmﬁcantly closer to oceanic
surface radar statistics than the SSM/I statistics. An improved TMI algorithm is now
being used to process TMI data, and we expect even better agreement with ground-

based data. This will be examined in a future paper.
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APPENDIX
Computation of the Length Scale A

In this appendix we discuss in more detail the computation and interpretation
of A? defined in Eq. (2.13). It is helpful in developing an interpretation of A to assume

that the footprints are sufficiently densely and evenly distributed that they can be
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treated as if arranged in a regular rectangular array completely filling the area A = L2.
Each footprint occupies a box of side d = L/N. The number of footprints is then

Ny = NZ2. The quantity A so defined in general depends both on the area size L and
the footprint size d. For instance, if‘ the area is small enough to be covered by a single
footprint, then obviously A = L. More generally, however, A is closely related to the
scale over which the data are spatially correlated, as we now show.

Using the identity

sz(z—i)" Z (N = |m])f(m) (A1)

i=1j= m=—N
for a function f(i) defined at each mteger i, [{| £ N — 1, we can write (2.13) as

N4 Z Z pI%i; — xil)

i,j=1ki=1

Z Z (N = [m1[)(N — |mal)p(|m]|d)

m1=—N mg=—N

(A.2)
This formally transforms the sum over the correlation between all pairs of footprints in
the N x N array into a weighted sum of the correlation between each footprint in an
equally spaced (2N + 1) x (2N + 1) array and a footprint located at the center of the
array. If p(|m|d) is sufficiently smooth, Eq. (A.2) can be treated as a discrete numerical
approximation to a continuous double integral. The approximation becomes exact in the
limit d — 0 ( “pomt footprint”). Introducing the separation vector s = md, and using
the relations A = L? and L = Nd we can express A? in this limit as an area integral

over a 2L x 2L square:
1 L L
7 [yt [ dsa@ = ls)(Z = Isa)o(s])
By going to polar coordinates this can be reduced further to the one-dimensional

integral
V2L
A% = 4/0 sg(9)p(s)ds (A3)
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with the angular integral replaced by the areal weighting factor

w1(s) s s .
g(s) = L ) dell = Feos)(1~ Tsing) (Ad)
where
(s) . {0, s< L;
o(s) =
cos~}(L/s), s> L;
and

p1(s) =m/2 = po(s) .

Carrying out the integrations in (A4) we get

n/2 —2s/L + s2/(2L?), 0<s< L
g(s) = |
7/2—1—2cos Y (L/s) +2¢/(s?/L* —1) — s%/(2L?), L<s<V2L.
When the footprints are small compared with spatial correlation lengths and the

grid-box size A is large, one can easily show that
A% - orL2, (A5)

where
(o o]
Liw = [ spls)ds (A6)

is an “integral correlation length” which is just the usual correlation length, the (1/e)-
folding distance, if the correlation p(s) decreases exponentially.

Although the continuous integral representation of A? given by Eq. (A3) in the
limit of infinite féédlution is conceptually illuminating, estimation of the integral from
the finite resolution data in practice takes one back to a discrete sum. Wé estimated
A? for each 2.5° grid-box area as follows: The footprint pairs are binned according to
their mutual distance of separation in units of d/2 where d is the nominal diameter of
an SSM/I footprint (about 28 km). For all the pairs belonging to the k-th separation
bin (k = 0,1,2,...,kmax = [2V2L/d], where [z] denotes the integer part of z) we

compute the correlation coefficient pi, the mean separation 3 and the angular factor
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gk = g(kd/2). In terms of these quantities a reasonably accurate estimate of A2 is given

by the Riemann-sum approximation

kmax 1

43 5(Pr+18k+19k+1 = PkFkk) (Sk+1 — Sk)-
k=0

This method of proceeding does not require the assumption that the footprints be
uniformly distributed in the area A that was used to develop the interpretation (A3) for
A. We have tested the accuracy of the approximation by plotting s?A%/A against o%.

Our results are closely fitted by a straight line with unit slope.
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Figure Captions

FIG. 1. Relative sampling error of monthly grid-box averages over the equatorial
western Pacific as a function of mean local rain rate R. SSM/I estimates have been
corrected for missing data. A power-law fit is shown. Estimates using surface radar data
assume coverage identical to what is provided by the TRMM microwave instriument,
averaging 30 visits per month, very close to the SSM/I sampling. GATE radar data
were taken during 1974. TOGA COARE radar data were taken contemporaneously with
the SSM/I data.

FIG. 2. Ratio of the variance of instantaneous area-averaged rain rate Ra(t) to R, A
= 2.5° x 2.5°, computed following the procedures used for Fig. 1. The simple model
predicts that this quantity should be insensitive to local rain rate. Error bars (95%
conf.) are shown only for GATE, but others would have similar errors. A power-law fit
to the SSM/I points is shown. Corresponding statistics derived from TRMM TMI data
are also plotted, and will be discussed in Sec. 6.

FIG. 3. The scale of “statistically independent rain events,” for SSM/I data in 2.5°

x 2.5° grid boxes, from Eq. (2.13). If spatial correlations decreased exponentially as
exp(—2/A) with separation z and the dimensions of A are large compared to A, then

A = A/+/2m. See appendix for details.

FIG. 4. Mean r. and standard deviation s; of SSM/I rain rates in FOVs with nonzero
rain, and the ratio p. = s¢/7c.

FIG. 5. Autocorrelation of SSM/I rain rate averaged over 2.5° x 2.5° grid boxes for
various categori%r of monthly rain rate R. Correlations are shown only when more than
about 400 pairs of observations are available at a given separation 7. Curves through

data points are smoothed interpolations.
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Tables

TABLE 1. Power-law dependence of r¢, s¢, and A on p, defined in Eq. (5.1), and
power-law dependence of og/R on R defined in Eq. (5.9), for TRMM TMI statistics
over the western tropical Pacific. As can be seen in Fig. 2, fits to the data must be

obtained separately for small and large R.

o B 0% 0 o (mm h"l) s (mm h_l) Ao (km)
R<01mmh™! 102 340 046 003 24.6 379 175
R>01mmh™! 14 09 044 -034 104 14 165







